Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.
نویسندگان
چکیده
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
منابع مشابه
Applications of Small Molecules in Muscle Tissue Engineering
Introduction: Skeletal muscles account for about 40% of the total body weight. Every year, hundreds of people lose at least part of their muscle tissue due to illness, war, and accidents. This can lead to disruption of activities such as breathing, movement, and social life. To this end, various therapeutic strategies such as medication therapy, cell therapy and tissue transplantation have been...
متن کاملPhotolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium.
The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum-free defined culture system, differentiation of C2C12 cells into myotubes required surface-bound signals such as substrate-adsorbed vitronectin or laminin. On the basis of this substrate requirement of myotube formation, we developed a photolithography-based method to pattern C2C12 myotubes, where...
متن کاملElectromechanical Coupling between Skeletal and Cardiac Muscle: Implications for Infarct Repair
Skeletal myoblasts form grafts of mature muscle in injured hearts, and these grafts contract when exogenously stimulated. It is not known, however, whether cardiac muscle can form electromechanical junctions with skeletal muscle and induce its synchronous contraction. Here, we report that undifferentiated rat skeletal myoblasts expressed N-cadherin and connexin43, major adhesion and gap junctio...
متن کاملElectromechanical Coupling between Skeletal and Cardiac Muscle
Skeletal myoblasts form grafts of mature muscle in injured hearts, and these grafts contract when exogenously stimulated. It is not known, however, whether cardiac muscle can form electromechanical junctions with skeletal muscle and induce its synchronous contraction. Here, we report that undifferentiated rat skeletal myoblasts expressed N-cadherin and connexin43, major adhesion and gap junctio...
متن کامل3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering
Skeletal muscle tissue engineering is a promising approach for the treatment of muscular disorders. However, the complex organization of muscle, combined with the difficulty in finding an appropriate source of regenerative cells and in providing an adequate blood supply to the engineered tissue, makes this a hard task to face. In the present work, we describe an innovative approach to rejuvenat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part B, Reviews
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2014